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Abstrad The mathematical structures of the theories of a two-level atom interacting with 
radiation and an electromagnetic wave interacting with a dielectric medium in which it is 
propagated as a pIane wave are identical. The spin structure of the Jones operator in optics, 
representing the polarizer, is obtained in its general form in terms of Stokes parameters, and 
identified with the optical density operator with a spin structure identical with the density 
operator in the quantum mechanics of the atom. 

While the quantum dynamical equation of the atom can be reduced to the gyroscopic 
form, the correspondence law giving expression to the parallelism of the two processes leads 
to forms of the dynamical law in optics which are identical with those of the quantum theory 
of the atom. In this way one obtains the Hamiltonian HL of the photon. HL is afunction of 
angles which characterize the state of polarization in its graphical representation as an 
ellipse and play the role of generalized coordinates. It leads at once, through Hamilton’s 
canonical equations of classical mechanics, to the spin angular momentum and the cunnec- 
tion between the spin and polarization. 

Dynamics and polarization are two aspects of the same phenomenon, namely, an 
interaction process which leads essentially to phase shifts and rotations, in absolptive as in 
scattering processes. The equation of the photon can be interpreted in terms of propagation 
in a dielectric medium or in terms of interaction with the two-level atom equally well. In 
view of the separate equations of the photon and the atom in mutual interaction, of identical 
form, one can regard the absorptive process as a collision process involving action and 
reaction. 

An elementary system is said to be polarized if one can assign a vector to it. The 
electron is polarized because of its spin angular momentum. Electromagnetic radiation 
is polarized since a vector can be assigned to it, namely the Stokes vector, which also 
characterizes the state of polarization. An atom with a pair of isolated levels and 
making transitions between them under the influence of radiation is also polarized in 
this sense as Feynman eta1 (1957) showed. 

But Feynman et a1 did not emphasize the polarization aspect and considered only 
the dynamical aspect of the theory. As a matter of fact the basic idea of a relation 
between polarization and dynamics was already present in the equation (Dirac 1958): 

1-im l + n  a 
I - n  l+im b 
-=-=- 

where 1, m, n are the direction cosines of the spin vector U (of unit length) whose 
eigenstate is a superposition of the eigenstates of 0; and a, b are the probability 
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coefficients of these eigenstates. This result only needs to be taken a little further to 
obtain the parameters 1, m, n in terms of transition probability coefficients: 

1 = ab* + ba* 

m = +i(ab* - ba*) 

n = (aa* - bb*). 

These direction cosines are none other than the parameters introduced by Feynman et 
a1 in the dynamics of the atom. The work of Feynman et al had two merits: it treated the 
more general case of a two-level system which includes the atom and the electron as 
special cases and it showed that the gyroscopic equation in atomic dynamics foilows 
directly from Schrodinger's wave equation. 

A general theorem can be stated: that polarization and dynamics are two aspects, or 
two alternative modes of description, of an interaction process. One may look for the 
gyroscopic equation in the field equations of the electromagnetic wave process in a 
dielectric medium and easily find it. The dynamical equation of polarization thus 
provides the basis for a direct comparison of the electromagnetic wave process in a 
dielectric medium and the dynamics of an atom under the influence of radiation. 

It is not merely that a vector can be assigned to the atom but that in the work of 
Feynman et al its components are formally identical in structure with the Stokes 
parameters in optics. This is more than one would readily expect. Further, the angular 
momentum operators of the radiation field in quantum electrodynamics are identical in 
structure with the Stokes parameters of polarization'and hence also with the atomic 
parameters. This leads one to explore more fully the direct connection between 
polarization of the classical wave field and the spin of the photon on the one hand and, 
on the other, the analogy between the parametric state of the electromagnetic field in 
the dielectric medium and that of the atom. The analogue of the atom in a state of 
transitions is the electromagnetic wave in the dielectric and the analogue of the field 
interacting with the atom is the dielectric! The two processes'being compared are the 
absorption (or emission) of radiation by an atom, considered as a two-level system, and 
the propagation of an electromagnetic wave through a dielectric medium whose effects 
include double refraction and optical activity. There are, of course, marked differences 
apart from the fact that the atom is a quantal system and the wave traversing the 
dielectric a classical system. The atom is losing energy to the interacting field (or gaining 
energy from it) but there is no such energy exchange between the dielectric medium and 
the electromagnetic wave. Rather there is exchange of energy between the two states of 
polarization as the wave traverses the medium. 

There is an extensive literature on the subject of interaction between fermions and 
photons involving the formalism of polarization. However, we feel that the essence of 
the matter has not been touched on and that the fundamental significance of the identity 
of the formal structures of atomic dynamics and the electromagnetic wave process tothe 
theory of radiation itself has not been explored. This identity leads directly to the 
quantization of the radiation field and to the basic equation of the photon in interaction 
with matter. This paper is mainly concerned with showing the parallelism between the 
two processes in $4 2 and 3 and, in 0 4, the implication of this parallelism to the 
extension of classical optics to quantum optics. 

To distinguish the term polarization used here from other types (magnetic, dielec- 
tric) it will be referred to as optical polarization, although our considerations are not 
limited to the visible range of frequencies. The field inducing transitions in the atom 
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be referred to as the interacting field and the electromagnetic wave propagated in the 
dielectric medium will be referred to as the optical wave to avoid possible confusion. 

2. Polarization and dynamics: the atomic case 

2.1. Kinematical structure 

The state of a two-level system interacting with radiation is represented as a superposi- 
tion of the eigenstates: 

q =  a q 1  + b q z  (2.1) 
where ql and q2 are the eigenstates to which the energy valuesEl, E2(E1 > E2) belong, 
the transition frequency wo being given by 

El - E2 = hwo 

(h  is Planck's constant divided by 2 r ) .  
In matrix form the state is written as follows: 

The normalization of the wavefunction is expressed by 

ua* + bb* = 1. 

The state q can be obtained from a unitary transformation 

(2.3) 

( 2 . 4 ~ )  

of the initial state which is represented by (3 if the atom is initially in the state of 
excitation and (9 if it is initially in the ground state: 

9 = W l  or P=TV,. (2.4b) 

The density operator for the two-level system (Venkatesh and Dixit 1970) is given 
bY 

p = ~ ( r o a o + r l o l  +r2a2+r3u3) (2.5) 

where ol, u2, a3 are the Pauli operators, a. = 1 and 

r ,=ab*+a*b 

rz=i(ab*-a*b) 

r, = ua*- bb* 
r,=aa*+bb*. 

The normalizing condition on r is expressed by 

r : + r i + r , 2 = r i = 1 .  

TI, r2, r3 can be regarded as the components of a unit vector r. In matrix form this vector 
can be represented by 

(2.8) r = rl a1 + r2a2 + r3u3 = 2p - 1. 
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The initial state of r is given by f a 3 .  The plus Sign applies to the state of excitation and 
fie minus sign to the ground state. r results from transformation of g3 by T: 

(2.9) 
A direct connection between the wavefunction "and the parameters r l ,  r2, rj can be 

r = Ta3t .  

established by noting 

p*="* 

Using the vector representation of and the normalization condition, this leads to 

a rl-ir2 I+r3 
b 1-r, rl+ir2 -=z=-=- (2.10) 

which is exactly the same as (1.1) although it applies more generally to two-level 
systems and is analogous to the Poincare representation of polarization in optics 
(Venkatesh and Sarkar 1976). (2.10) can be resolved into two expressions with an 
arbitrary phase constant 6:  

eis 1 rl-ir2 
Jz (1 - r p  a =  

1 1/2 is b= (1-r3)  e . Jz 
The vector r can be represented in terms of angles: 

r1 = sin 8 sin 4 
r2 = sin 0 cos 4 
r3 = COS 8. 

Fwe 1. The H coordinate system. 

Thus, 

z = a/b = -i cot&) ei+, 

(2.11) 

(2.12) 

Putting S = $ ($ - 4 + T), which implies no further restriction on S since the angle @ is 
arbitrary, 

(2.33) 

(2.14) 
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2.2. Dynamical law 
We shall consider the interaction of a radiation field at the position of an atom and 
regard the atom as having no permanent dipole moment in the eigenstates. The spin 
structure of the Hamiltonian is given by (Venkatesh and Dixit 1970): 

H = i A w .  a= $h(wlal + wzaz+ w g 3 )  

w1 =-e COS wt 

where 
(2.15) 

w2 = -9 sin wt 

w3 = WO. 

(2.16) 

0 is the pulse strength (apart from a factor y/h) and is given by 

(2.17) 

y is the transition dipole moment, $Eo the amplitude of the radiation applied in the 1-2 
plane and w its angular frequency. w, = w, *i w2 = -6 e"'"' represents the interaction 
of the radiation with the atom and is a product of two factors: 6 giving the coupling 
between radiation and the atom, and the exponential involving the radiation frequency. 

The dynamics of the atom is obtained from the equation of motion in quantum 
mechanics in any of its forms. It is most easily obtained from the dynamical law: 

ih aT/at = HT (2.18) 

by fist  solving the problem in the rotating coordinate system (Venkatesh and Roy 
1971). The dynamical law determines the meaning of 8 and C#J in the Tmatrix (2.14). 
Under conditions of resonance ( w =  wo) the solution is given by (2.14) with 
6 = (yE0/2h)t, 4 = wot. r is given by (2.11) with the signs f, 7 ,  T for rl,  r2. r3 
corresponding to the initial states (of Iower and higher energy respectively). 

Although the quantum mechanical problem is thereby completely solved it is of 
particular interest here to exploit other forms of the dynamical law. They are 

ih ap/at = - (pH-Hp) (2.19) 

dr/dt = w X r. 

(a .  U)@. a)-@. a)(a. a) = 2i(a x b )  . a. 

(2.20) 

The latter follows from (2.19) and (2.5) and from the identity 

The density operator is directly related to the polarization aspect of the two-level 
system and to the gyroscopic equation which describes the motion of the polarization 
vector. This motion is a representative of the atomic transition. 

3. Polarization and dynamics: the optical case 

The kinematical structure of optical polarization is exactly similar to that of the atomic 
case. To distinguish the two physical cases one might replace a, b by c1, CZ. In the 
optical case, however, one has 
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where g2 are the amplitudes and a the phase difference of the vibrations along two 
mutually perpendicular axes. The matrices in (2.14) have their optical analogues the 
interaction matrices which transform the state of polarization as the wave progresses 
through the dielectric. 

The dynamical variables of optical theory are expressible, as in the two-level atomic 
case, in the general form: 

a =C a,pp (P = 1,2,3,0>. 
CL 

Polarizers, retatders and optically active media are devices for the measurement of 
eigenstates. We shall work out one very simple case to illustrate how the relevant 
operator for a device can be found. For a linear polarizer with the transmission a i s  
taken as horizontal (direction 1 of a fixed coordinate system) the operator a1 is defined 
by 

a1V* =v1 alv2 = 0. 

a. and v3 are the only operators which act on the eigenstates in this way and the general 
form of a can be written as 

a ,  =4(qJ++J 
remembering the normalizing condition on VI. In fact the Pauli operators have simple 
meanings in optical theory. u1 represents a half-wave retarder with the fast axis at an 
angle 3 4 4 ,  u2 a half-wave circular retarder and a3 a linear half-wave retarder with the 
fast axis at angle 0". U- and U+ are excitation and de-excitation operators effecting 
transitions VI + V2, V2 + V1 respectively. 

The general form of the eigenvalue equation alV1 = V1 is obtained by the unitary 
transformation 

Tv, =v, a: = a = T a l f .  

On the left-hand side we have TalfTV1 = (TalVTWl . Hence 

ffV=V ( 3 . 2 ~ )  

where 
f f  = 3 ~ s o u o + s l u l + s ~ u ~ + S ~ a 3 ) .  (3 .2b)  

sP(p = 1,2,3,0) are given by expressions similar to (2.6) and (2.7). sl, s2, s3 are the 
Stokes parameters characterizing the state of polarization. 

The general expression for (Y gives the dynamical variable a (relevant to the 
polarizer) in terms of Stokes parameters and relates the state of polarization of the 
incident beam to the direction of the transmission axis of the polarizer required for full 
transmission. 

The eigenvalue equation ( 3 . 2 ~ )  is useful in expressing the state V in terms of Stokes 
parameters. The procedure is the same as in the atomic case and leads to exactly S i m i l a r  
results which may here be omitted. 

The ratio of the coefficients c1/c2 can now be obtained in terms of SI, SZ, $3: 

-=z=- C1 s1 -is2 (3.3) 
c2 1-s3 * 
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This is analogous to the expression for the ratio of probability amplitudes a, b in the 
atomic case. sl, s2, s3 correspond to the direction cosines of the spin direction in the 
electron case mentioned in 0 1. Thus the eigenvalue equation ( 3 . 2 ~ )  brings out the 
important relationship of optical theory, namely that between polarization and 
dynamics when the physical parameters gl, g2, a are allowed to vary with time. The 
representation of S in terms of c1 ,  c2 thus occupies a central position in optical theory. 

S may be represented in polarization space in the coordinate system C (figure l), 
exactly as in (2.1 1). The relation between the Stokes parameters and the angles of the 
graphical representation of polarization as an ellipse (Jauch and Rohrlich 1955) is 

Optical analogue of the dynamics of the atom 

s2 SI tan(28) = - tan(2 y)  = 
(Si + S y 2 ’  33 

where 6 is the azimuthal angle and y the ellipticity angle. In the C representation 

sin 8 cos 4 
1 -sin28cos2+’ 

tan(2 y)  = tan 26 =tan 8 sin (6. 

There is another representation of S in terms of angles in c’ illustrated in figure 2: 

s1 = cos 8’ sin 4‘ 
s2 = sin 8’ 

s3 =COS e’ COS 4’. 

Figure 2. The 2‘ coordinate system. 

The first representation gives a very simple connection between the physical parameters 
81, g2, a and the angles 8, 4 :  

g2 = 2 sin ($e>, g1 = 2 c&), 

tan a = sz/sI =cot 4 or (6 = -(a +;TI. 

The field amplitudes depend on 8 only and the phase difference on (6 only. The second 
representation gives a direct connection between the angle e’,+’ and the angles 
appearing in the graphical representation of polarization (see figure 3): 

4‘ = 26 

e’= 27. 
(3.4) 

Twice the azimuthal angle is the longitude 4’ and twice the ellipticity angle is the 
latitude 8’ of the unit sphere with 2-axis taken as the polar axis (see figure 3). 
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2 

F v  3. Graphical representation of polarization. 

3.1. Optical density operator 

The operator a is not only the general form of the operator representing a polarizer 
which is completely transparent to light whose state of polarization is specified by S, it is 
also the optical density operator from which intensity functions can be obtained in 
classical optics. Given a beam A whose state of polarization is specified by S, the 
corresponding polarizer operator is a = f( 1 + S .  a) for a device which is completely 
transparent to the beam A in state V: 

aV=V. 

Let us consider a second beam B in state V’ = ($), the corresponding parametric state 
being S‘ and the polarizer operator 

a’=$(l+SI.u) 

referring to a device which is completely transparent to B. Note that a‘V = V’. What is 
the intensity of the beam A after transmission through the second device? An operator 
acting on the state Vwill, in general, change the state V which may be represented as the 
superposition of orthonormal states V and V”. For a polarizer, say a’, 

a’V = pV 
(from the meaning of a polarizer). Thus 

p = V’aY = V V  = aa‘*+ bb‘*. 

The intensity of the beam B in state V‘ contained in the beam A in state Vis therefore 

I’=pp* = (czar* +bb’*)(a*a’+b*b’) 
or 

I’=$(l+S.S’). 

The results are symmetrical with respect to A, a and B, a‘. On the other hand k t  US 
form the trace of the product aa‘: 

Tr(aa ’) = d Tr[( 1 + S .  a)( 1 + S’ . a)] 
= f Tr[(l + S. a+S’ . a+S. US’ . U)] =f(1+ S .  SI>. 

Thus the Tr(aa’) gives the intensity of the beam B after transmission through the first 
device which is completely transparent to beam A. The symmetry of this expression 
with respect to beams A and B is obvious. In other words a enables us to calculate the 
probability of selecting from a given beam in a definite state of polarization s, a beam 
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in any arbitrarily chosen state of polarization S‘. Hence a has the significance of the 
optical density operator. We may express this explicitly by 

Optical analogue ofthe dynamics of the atom 

(3.5) (Y=pL=;(souo++.a). 

This is essentially the coherence matrix for monochromatic waves (Born and Wolf 
1970). 

Generally the dynamical variables of two-level systems have the following form: 

p = p + s(a 1 (+I + a2a2 +a3u3) 
where p q are c numbers like a. However, the a are not normalized. If N= 
(a: + a2 + is the normalizing constant, p can be written as 

P = p + N q a  

where a =$(S’. a’) and S’ = U /N.  The expectation value of /3 is then 

3.2. Dynamical law 

The Stokes vector which specifies the state of polarization of an electromagneticwave is 
so far considered to be static. Its general motion is a gyroscopic motion with &, a 
varying with time when the wave is propagated in a dielectric medium. For an optically 
active medium, the interaction angular velocities w l ,  wz, w3 can be determined from the 
D-E relation involving the gyration vector y. The interaction velocities w l ,  w2, w3 are 
again given by (2.16) in terms of 8 and 4 where 4 =-(a +$n), a being the phase 
difference. For a progressive wave in a doubly refractive medium 

2TC 1 1  
(Y =-(t-to) --- 

A (n l  n )  (3.7) 

where nl,  n2 are the refractive indices for the fields El, E2 in the medium and ( t -  to) is 
the time of flow of the energy of the optical wave into the dielectric medium. 

1 1  
ci = w3 = w (;;; ---) . (3.8) 

The full symmetry between the atomic and optical cases is established by allowing the 
amplitudes gl, g2 to vary with time subject to 

so = $(ST + s;) = tro = constant 

From the normalizing condition (Io = 2, So = 1) 
g ; + g 2 -  2 - 8 .  ‘2 

The state of polarization which in general is elliptical at any instant in time varies with 
time because of the time dependence of a. The optical rotatory effect is further 
superposed on the time-varying elliptical polarization. The angle 8 for an optically 
active medium is simply given by 

e = 28 = w(n: -n;) t  (3.9) 

Where n: ,  n; are the refractive indices for the right and left circular beams of light. 
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3.3. Equations of motion in opt i~s 

Since w and S can be represented by two-dimensional matrices 

s -f s = s, (+I + s 2 a z  + s3u3 = 2p, - 1 

w+w= W l U ,  + wyTz+ w3a3 

we can, with the aid of the identity (3.6), write the gyroscopic equation in matrix fQm by 
simply scalar multiplying it by U: 

ibL=i(wpL-pLw). (3.10) 

In terms of the T operator the equation of motion takes the form: 

i i  = &T. (3.11) 

In terms of the state, the dynamical law can also be obtained from (2.13), now valid for 
c1, E t :  

iV = &V. (3.12) 

The procedure essentially is as follows: 

wv = W(TV,) = (wT)Vl = (2ii)v, = 2i(iv, ) = 2iV. 

4. Quantization of the optical wave 

We note that in the classical optics and quantum mechanics of the two-level atom, the 
states, the parameters, the transformation operators and the density operators are 
identical in structure and physical significance. We may therefore regard optical 
polarization and the dynamics of the atom as representatives of an interaction process 
between a two-level system and a force field. We may raise the status of this parallelism 
to a correspondence law which enables one to transform the equations of motion in 
optics [(3.10), (3.11) and (3.12)) into forms of the dynamical law for the atom by 
multiplying them through by h and thus obtain the equations of quantum optics: 

(4.1) i h b ~  = -(PLHL - HLPL) ; pL = f( 1 +s. U) 
i h i  = HLT (4.2) 

ihV = HLV (4.3) 

H , -2hw=fh(w1a,  -1. + w2u2+ w3a3) (4.4) 

provided we interpret 

as the energy operator of the optical field. It is a simple linear function of the interaction 
velocity components w l ,  w2, w3. H, in optics has the same structure as in atomic 
theory. The interaction can be interpreted either in terms of the dielectric medium 
interacting with light or in terms of the radiation interacting with the atom. Thus, in 
optics 

w3 = +-). 1 1  (4.5) 
w1 = w(n: - n:) sin a, w2 = - w(n: - n:) cos a, 

nl n2 
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Or, in atomic mechanics, 

w3 = WO. 
YE0 YE0 w1= --cos 4, 

2h 2A 
w2 = +-sin 4, (4.6) 

(Note the relation Q =-(a +$T) and the correspondence w(ni -n!Jt-* (yE0/2h)i 
(equations (2.17) and (3.9))J In the latter case the equation of motion is perfectly 
symmetrical with respect to the photon and the two-level atom. 

We have in (3.5) the optical density operator of a classical wave with the state of 
polarization given by S. It is also the density operator of a single polarized photon in 
quantum theory. It is a simple linear function of the Stokes parameters and may be 
taken over into quantum field theory if c l r  c2 are regarded as boson operators (Mehta 
and Sharma 1974). 

4.1. The HamiZtonian of the optical waue 

(4.4) gives the quantum mechanical Hamiltonian. The classical Hamiltonian function is 
the expectation value of the energy operator: 

(Hd = T~(PLHL). (4.7) 

(Hd=;h(wlsl +w2s2+w3s3). (4.8) 
This is essentially the classical energy function which appears as the scalar product of 
the interaction vector w and the state vector S. Let us investigate the structure of this 
Hamiltonian. 

From the general formula (3.6) 

4.1.1. Energy. From the angle representation of w and S in E: 
WlS,  + w2s2 = 0 (4.9) 

SO that the expectation value of the Hamiltonian in optics is 
(Hd=%V3s3 (4.10) 

which is identical with the expression of Feynman et a1 (1 957) for the case of the atom. 
In order to find the energy of the optical wave in vacuo which is polarized along the 1- 
or 2-direction we consider a polarizer (see (3.8)) for which 

nl = 1, n2 = CO, $T + a = -9 = wt; w1= w2 =o, w3 = d  =-4 = w 

w1 = w2=0,  w3=& =-Q = -w. 1 nl= CO, n2 = 1, IT +a = -4 = wt; 

In either case, corresponding to the states of polarization s3 = f 1 
(HL) = ihw. (4.11) 

The quantity on the left-hand side is just half the total energy of the radiation field in 
volume V representing the electrical part of it only, so that we may put for the total 
energy 

(4.12) 

we conclude that corresponding to a single atom in a state of transition, the representa- 
tive optical wave contains one quantum of light of energy hv. This conclusion would not 

E = hv. 
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be unique however, unless there was additional support from atomic mechanics itsell; 
namely the interpretation of ua* = sin2(O/2) and bb* = cos2(O/2) as probabilitiesfor the 
photon. The quantization of the wave field implying the appearance of the individual 
photon necessarily introduces probabilistic concepts. This is the first important arise- 
quene of the correspondence law. The h e a r  momentum follows from the classid 
relation p = S/c where S is the Poynting vector: 

p = hv/c. (4.13) 

4.1.2. spin angular “enrum.  From the relation between the angles of the c’ 
representation and those of the graphical representation ̂ (3.4), the Hamiltonian 
operator (4.4) is expressed as 

HL= h(j,cr,+9u*+i,3u3)- (4.14) 
Note that in this representation u2 is diagonal and 

w: = e: = -6’ cos 4’, w: = $‘, w i  = 6: = i fs in  4’ (4.15) 

Regarding the angles yl, 8, y3 as generalized canonical coordinates, we obtain the 

aHL/ai,, = ha,, aHJa8 = ha,, aHL/ay3 =ha3.  (4.16) 

and i,, = i, cos 4’, y3 = i, sin 4‘ analogously to (4.15). 

conjugate canonical momenta from Hamilton’s equations: 

Their commutation rules follow from those of the Pauli operators: 
MK = ~ u K  (4.17) 

M,M2- M2M1 = 2iltM3 etc. (4.18) 
The eigenvalues of the spin angular momentum follow from the second equation in 
(4.17): 

M2 = *h. (4.19) 

Note that there are no angles in physical space corresponding to the velocities +I, +3 

which are merely formal. Hence M,, M3 cannot be regarded as spin components. 
The connection between spin and polarization parameters is established as follows. 

In 2’ representation the classical Hamiltonian is 
(4.20) 

and 
(HL) = h(?lsl+ 8 x 2  f ?3s3) 

W ~ > / a + i  = hsi a(HL)/a8 = hs2, a ( ~ ~ ) / a i , ~  = hs3. (4.21) 

The angular momentum is thus 
M2 = hs2. (4.22) 

For circularly polarized light (s2 = f 1) this leads to the eigenvalues (4.19). &ght 
circularly polarized light can be assigned the value +h and left circularly polarized light 
the value -h. This is the second important consequence of the correspondence law. In 
view of the relation 

w;s1+ w:s3 = 0 
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the expression for the energy becomes 

(HL) = kfi8 
which is a product of the angular momentum of the photon and the angular velocity and 
is similar to the energy-momentum relation E = pc for the photon. This derivation is 
similar to the derivation of the magnetic moment of the electron by obtaining the 
interaction energy in an external magnetic field. Consistently with the probabilistic 
interpretation one concludes that for linear light (sl = 1; s3 = l), which is asuperposition 
of right and left circularly polarized beams of light, the angular momentum is zero since 
the spins are oppositely directed with equal probability. 

Similar remarks to those following (4.19) can be made. This is perhaps connected 
with the lack of gauge invariance of the components MI, M3 regarded as functions of 
the boson operators. Nevertheless one could introduce them to obtain the commuta- 
tion rules (4.18) to find matrix representation of M2. Note, however, that (4.22) i s  now 
a classical definition (in spite of h!)  and turns out to be the spin operators in quantum 
field theory. 

4.2. The electron case 

The results of the previous analysis should be contrasted with those for the electron for 
which the canonical variables are 8, C# and 

H= $%( 4 1 -k &U2 + &3). (4.23) 

The canonical variables are realised already as angles in physical space characterizing 
the parametric state of the electron. Thus for the electron 

M K -1 - (4.24) 

and the eigenvalues are 

M3 = *ih.  (4.25) 

The difference between the photon and the two-level material system should therefore 
be traced to the generalized coordinates in the two cases. The correspondence law has 
to do with the formal structure but does not extend to the values of the dynamical 
variables. Analogously to (4.21) for the photon we have 

a ( ~ > / a i ,  = %rl,  a(lci>/ati, = 9ir2,  a(H)/a$ = bhr, (4.26) 

giving the connection between the spin and the parameters r l ,  r2, r3. It is on the strict 
basis provided by equations (4.21) and (4.26) that the correspondence between the 
states of polarization of the classical wave and the direction of the spin of the fermion 
can be established. 

4.3. Details of the analogy between optics and atomic transition theory 

The same results follow from an examination of the corresponding relationships 
between optical polarization theory and atomic dynamics; this examination is not 
without interest. From (3.7) 

1 1  
w 3- - w  o+w(;-;) 
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or 
1 1  

nl n2 
h WO = El - E2 + h w (- - -) . 

We note that the expectation value of the Hamiltonian 

(HA) =$w0r3. 

This can be recast as follows in resonant interaction: 

f the a om is 

or 

(HA) =El cos2(O/2) + E2 sin2(8/2). 
When we transform this into its optical analogue it is necessary to introduce the 
common scale factor for dimensional reasons and put (0  3) 

cos2(e/a) + ~ 8 : / 4  

sin2(e/2> + ~ 8 ; / 4  

so that we may express the correspondence between optics and atomic mechanics as: 

El+hw/nl  E2 + h w/n2. (4.27) 
Thus 

(4.28) 

On the other hand the same quantity, regarded as the energy flowing across area F i n  t 
seconds, is given by electromagnetic theory (see (4.32)): 

(4.29) 

On comparing (4.28) and (4.29) 

A = V/47rhw. 

After introducing this dimensional term the components are: 

Quantity in volume V S’ = flux across area F = S/t 

8 1  8 2  cos CY 
V rl+sl=- 

4ahw 

g1 g2 sin CY 
V 

r2 + s2 = - 
4 d w  

V 
8ThW r 3 + s 3 = -  cg: - 89) 

V 2 ro + so = -( s: i- 8,) 
8ahw 
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The three physical quantities E, p ,  M, = M3 can also be defined classically for the 

optical wave (Baym 1969): 

energy: 

linear momentum: 

angular momentum along z : 

(4.31) 

(4.32) 

(4.33) 

where S is the Poynting vector directed along the unit vector nl (along z), w the angular 
frequency of the wave, V the volume, F the area of cross section of flow of energy and 
V = Fct. 

Since the time average of the total energy W is given by 

W=- a:+ tx; 
81t 

we have from (4.30d) 

w= hv 
since so = 1. We are therefore dealing throughout with only one photon in the field as 
already remarked. 

From (4.30b) and (4.33) 

M, = hS1. 

At the same time the atom in the transitional state would acquire, by the correspon- 
dence law, two properties: namely a pseudo-linear momentum of magnitude $fZwor3/c 
and angular momentum M, =fh2 both varying with time. 

5. Summary and discussion 

The formalism of polarization in classical optics is identical with the quantum mechani- 
cal formalism except for the commutation rule underlying the philosophy of quantum 
theory. This apparently new parallelism can be traced to the isomorphism of SU(2) and 
0 + 3  and the fact that the two physical systems are two-level systems whose dynamics 
can be expressed in terms of gyroscopic motion. The ultimate significance of this 
parallelism is that the optical field is quantizable and that the dynamics of the atom and 
of the photon in mutual interaction can be put on a symmetrical footing. If the atom 
introduces phase shifts and rotations (or in other words changes the state of polarization 
Of the photon) the photon effects similar changes in the atom. The absorptive (or 
emissive) process is therefore a collision process involving two particles. In view of the 
relationship between dynamics and polarization, the continuous change in the intensity 
Of the photon beam interacting with the atom implies a continuous variation of s3 and 
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can be regarded as due to the flow of energy from one state of polarization (s3 = + 1) to 
another (sg = - 1). 

The parallelism means that the structure of the Hamiltonian for the photon is 
identical with that of the atom. The quantal properties of the electromagnetic wave 
immediately follow from this Hamiltonian. The graphical representation of polariza- 
tion, far from being merely a vivid picture of the polarization in elementary optics, plays 
its proper role in quantum theory by providing generalized coordinates, namely the 
azimuthal angle and the ellipticity angle, for generating angular momenta. Thereby, 
also, the picture of polarization in optics becomes very precise and identical with that of 
the electron. The Stokes parameters acquire a new meaning; s2, s3 are regarded as two 
independent variables giving the angular momentum and energy, and are associated 
with a single photon. The connection between spin and polarization becomes clear. 

Thus optics gains an important dimension from dynamics. (This is similar in spirit to 
the method of quantizing the particle motion in Schrodinger’s original method by 
establishing the analogy between optics and classical mechanics.) One could ascribe 
new properties to the optical process, the fields gl, g2 being interpreted in terms of 
probability amplitudes a,  b and the refractive indices nl, n2 characterizing the two 
eigenstates of the wave process in the refractive medium. 

On the other hand, the theory of atomic transition also gains. One can ascribe a 
phase (4 = wt) and state of polarization r(8,b) to a two-level system. The free atom is 
linearly polarized in the eigenstates, horizontally-if it is in the state of higher energy and 
vertically if it is in the ground state. Its more general state of polarization corresponds to 
a superposed state just after interaction with a radiation field for a limited duration of 
time. In general, during the interaction, the state of polarization is continuously 
changing with time as determined by the gyroscopic equation. 

Of course the analogy can say nothing about the values of any dynamical variables 
or the nature of the particles. The photon is a boson and the electron (or the two-level 
system) a fermion. This difference can be traced to the existence of types of generalized 
coordinates for the two cases. For the atom they are the measurable angles 8, Q of the 
spin representation, and for the photon they are c$’= 2 4  8’ = 2 y of the graphid 
representation (the ellipse). 

One could go further in the use of the analogy to obtain an elegant solution Of the 
atomic transition problem in terms of the PoincarC representation of optical polariza- 
tion by stereographic projection of the point of the unit sphere on to the complex Plane 
(Venkatesh and Sarkar 1974). The parallelism could be extended to almost every 
physical situation in quantum mechanics which is analogous to an optical Context. 
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